Graph-based classification of self-dual additive codes over finite fields
نویسنده
چکیده
Quantum stabilizer states over Fm can be represented as self-dual additive codes over Fm2 . These codes can be represented as weighted graphs, and orbits of graphs under the generalized local complementation operation correspond to equivalence classes of codes. We have previously used this fact to classify self-dual additive codes over F4. In this paper we classify selfdual additive codes over F9, F16, and F25. Assuming that the classical MDS conjecture holds, we are able to classify all self-dual additive MDS codes over F9 by using an extension technique. We prove that the minimum distance of a self-dual additive code is related to the minimum vertex degree in the associated graph orbit. Circulant graph codes are introduced, and a computer search reveals that this set contains many strong codes. We show that some of these codes have highly regular graph representations.
منابع مشابه
On the Classification of Hermitian Self-Dual Additive Codes over GF(9)
Additive codes over GF(9) that are self-dual with respect to the Hermitian trace inner product have a natural application in quantum information theory, where they correspond to ternary quantum error-correcting codes. However, these codes have so far received far less interest from coding theorists than self-dual additive codes over GF(4), which correspond to binary quantum codes. Self-dual add...
متن کاملClassification of Hermitian self-dual additive codes over GF(9)
Abstract—Additive codes over GF(9) that are self-dual with respect to the Hermitian trace inner product have a natural application in quantum information theory, where they correspond to ternary quantum error-correcting codes. However, these codes have so far received far less interest from coding theorists than self-dual additive codes over GF(4), which correspond to binary quantum codes. Self...
متن کاملDirected graph representation of half-rate additive codes over GF(4)
Abstract. We show that (n, 2n) additive codes over GF(4) can be represented as directed graphs. This generalizes earlier results on self-dual additive codes over GF(4), which correspond to undirected graphs. Graph representation reduces the complexity of code classification, and enables us to classify additive (n, 2n) codes over GF(4) of length up to 7. From this we also derive classifications ...
متن کاملSelf-dual codes over F2 + uF2 with an automorphism of odd order
We complete the classification of all Lee-extremal and Lee-optimal self-dual codes over F2 + uF2 of lengths 9 through 20 that have a nontrivial odd order automorphism begun in [W.C. Huffman, On the decomposition of self-dual codes over F2 + uF2 with an automorphism of odd prime order, Finite Fields Appl., in press]. Along the way, we find all Lee-extremal self-dual codes over F2 + uF2 of length...
متن کاملOn the classification of the extremal self-dual codes over small fields with 2-transitive automorphism groups
There are seven binary extremal self-dual doubly-even codes which are known to have a 2-transitive automorphism group. Using representation theoretical methods we show that there are no other such codes, except possibly n = 1 024. We also classify all extremal ternary self-dual and quaternary Hermitian self-dual codes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. in Math. of Comm.
دوره 3 شماره
صفحات -
تاریخ انتشار 2009